Reactions of Olefin Polymerization Activators with Complexed Pentamethylcyclopentadienyl Ligands: Abstraction of Tetramethylfulvalene

William J. Evans,* Kevin J. Forrestal, Mohammad A. Ansari, and Joseph W. Ziller

> Department of Chemistry University of California, Irvine Irvine, California 92697-2025

Received September 2, 1997

Trialkylaluminum and triarylborane compounds are commonly used as activators for generating cationic alkylmetallocenes which are effective olefin polymerization catalysts.¹ For example, $(AIR_3)_x$ and related compounds function as Lewis acids and can provide alkyl initiating sites in the conversion of complexes such as Cp_2MCl_2 to species such as $[Cp_2MR][R_3AlCl]$ (M = Ti, Zr, Hf; "Cp₂" = separate or linked cyclopentadienyl ligands with various degrees of alkylation) and the powerful Lewis acid, $B(C_6F_5)_3$, has been used to abstract alkyl ligands from Cp_2MR_2 complexes to form catalytically active $[Cp_2MR][RB(C_6F_5)_3]$ complexes.¹ In the past it has been assumed that the Cp₂ bis-(cyclopentadienyl) ligand sets function as inert spectator ligands which provide solubility, stability, and the proper steric environment for catalysis. We now report that in certain cases the frequently used C5Me5 ligand is not inert to triarylborane and trialkylaluminum activators.

This discovery was made in a study of the reactivity of the sterically crowded complexes (C₅Me₅)₃Sm² and (C₅Me₅)₃U.³ These compounds initiate the catalytic polymerization of ethylene to high molecular weight,³ and the reaction chemistry of (C₅-Me₅)₃Sm⁴ suggested that the polymerization could occur through an η^1 -C₅Me₅ intermediate. To provide more information on the existence of an η^1 -C₅Me₅ species, (C₅Me₅)₃Sm was reacted with $B(C_6F_5)_3$ and Al_2Me_6 to determine if a C_5Me_5 ligand could be abstracted like an alkyl ligand to form an $[\eta^1-(C_5Me_5)B(C_6F_5)_3]^$ anion or a $Sm(\mu-\eta^1-C_5Me_5)(\mu-Me)AlMe_2$ bridging unit,⁵ respectively.

A reaction does occur between $(C_5Me_5)_3$ Sm and $B(C_6F_5)_3$ upon mixing in toluene,⁷ but as shown in eq 1, the isolated products do not retain all of the C_5Me_5 ligands intact. Tetramethylfulvalene

⁽¹⁾ For reviews and leading references only, see: Brintzinger, H. H.; Fischer, D. F.; Mulhaupt, R.; Rieger, B.; Waymouth, R. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 1143. Bochmann, M. J. Chem. Soc., Dalton Trans. 1996, 255. Coates, G. W.; Waymouth, R. M. Science 1995, 267, 217. Sinn, H.; Kaminsky, W. Adv. Organomet. Chem. **1980**, 18, 99. Jordan, R. F. Adv. Organomet. Chem. **1991**, 32, 325. Kaminsky, W.; Kulper, K.; Brintzinger, H. H.; Wild, F. R. W. P. Angew. Chem., Int. Ed. Engl. **1985**, 24, 507. Ewen, W. H. H.; Wild, F. R. W. P. Angew. Chem., Jan. 2007. Mathematical Science of the state of the H. H.; Wild, F. R. W. P. Angew. Chem., Int. Ed. Engl. 1985, 24, 507. Ewen,
J. A. J. Am. Chem. Soc. 1984, 106, 6355. Hlatky, G. G.; Turner, H. W.;
Eckman, R. R. J. Am. Chem. Soc. 1989, 111, 2728. Ewen, J. A.; Elder, M. J.
U.S. Pat. Appl. 1989, 41907; Chem. Abstr. 1991, 115, 136998g. Yang, X.;
Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1991, 113, 3623. Herzog. T. A.;
Zubris, D. L.; Bercaw, J. E. J. Am. Chem. Soc. 1996, 118, 11988.
(2) Evans, W. J.; Gonzales, S. L.; Ziller, J. W. J. Am. Chem. Soc. 1991,

Chem. Soc. 1988, 110, 6423.

(TMF) was identified as one product by ¹H NMR spectroscopy and the samarium product was identified as $[(C_5Me_5)_2Sm][\eta^3 HB(C_6F_5)_3$], 1, by multinuclear NMR spectroscopy, elemental analysis,⁷ and single-crystal X-ray diffraction⁸ (Figure 1). The samarium atom in 1 is ligated by two C_5Me_5 rings, two fluorine atoms from different arene rings, and the hydride. In contrast, in the related complex $[(C_5Me_5)_2ZrH][\eta^2-HB(C_6F_5)_3]$,⁹ no hydride coordination is observed and two fluorine atoms from the same ring are coordinated to zirconium.

Further confirmation of the composition of 1 was obtained from the independent synthesis of 1 via eq 2. $[(C_5Me_5)_2Sm(\mu-H)]_2^{12}$

$[(C_5Me_5)_2Sm(\mu-H)]_2 + 2 B(C_6F_5)_3 \quad --> 2 [(C_5Me_5)_2Sm][\eta^3-HB(C_6F_5)_3]$ (2)

reacts instantly with $B(C_6F_5)_3$ in toluene to give a product whose ¹H NMR spectrum is identical to that of **1**.¹³

It is interesting to note that eq 1 is the reverse of the synthesis of $(C_5Me_5)_3Sm$ from tetramethylfulvalene and $[(C_5Me_5)_2Sm(\mu-$ H)]2.3 Equation 1 can be viewed as a Lewis acid assisted β -hydrogen elimination from a putative (C₅Me₅)₂Sm(η^1 -C₅Me₅) unit which shows no tendency to β -hydrogen eliminate to give $[(C_5Me_5)_2Sm(\mu-H)]_2$. The most closely related reactions in the literature are the internal metalations of $(C_5Me_5)^-$ in complexes highly reactive in σ -bond metathesis. In these cases, formation of a formally dianionic (C5Me4CH2)2- ligand results.10,14

 $(C_5Me_5)_3Sm$ also reacts with Al₂Me₆. In this case, an η^1 -C₅-Me₅ ligand is found in the product,¹⁵ but single-crystal X-ray diffraction¹⁶ shows that it has completely left the coordination

(8) Compound 1 crystallizes from toluene in space group P1 with a =14.554(2) Å, b = 15.765(2) Å, c = 17.066(2) Å, V = 3855.5(7) Å³, and $D_{\text{calcd}} = 1.688 \text{ g/cm}^3$ for Z = 4. Least-squares refinement of the model based on 13 593 reflections converged to a final wR2 = 0.0726. The (C₅Me₅)₂Sm part of complex 1 has structural parameters typical of formally nine-coordinate (C₅Me₅)₂Sm-containing complexes (Evans, W. J.; Foster, S. E. *J. Organomet. Chem.* **1992**, *433*, 79–94). Comparison of the 2.45(5) Å Sm–H and the 1.18-(5) Å B–H distance with other data in the literature is complicated by the large error limits involved in these and the other measurements. The B–H distance are 2.05(11) and 2.11(9) Å in (C₅Me₅)₂Sm(μ -H)(μ -CH₂C₅Me₄)Sm(C₅- $Me_{5}_{2}^{10}$ 1.80(15) and 2.75(15) Å in $[(C_{5}H_{3}^{t}Bu_{2})_{2}Sm(\mu-H)]_{2}$ (Bulychev, B. M.; Gun'ko, Y. K.; Soloveichik, G. L.; Belsky, V. K. J. Organomet. Chem. 1992, 424, 289). Sm-H-B distances are 2.480(9) and 2.660(9) Å in the Sm²⁺ complex { $[(C_6H_5CH_2)_2C_2B_9H_9]Sm(DME)_2]_2$ (Xie, Z.; Liu, Z.; Chiu, K.; Xue, F.; Mak, T. C. W. *Organometallics* **1997**, *16*, 2460). Sm²⁺ is 0.191 Å larger than Sm^{3+,11} The 2.537(2) and 2.546(2) Å Sm-F distances have lengths consistent with dative bonds in comparison to other Sm-F bond distances: 2.244(6) Å in [(C₅H₄CMe₃)₂Sm(µ-F)]₃ (Schumann, H.; Keitsch, M. R.; Winterfeld, J. Demtschuk, J. J. Organomet. Chem. **1996**, 525, 279) and 2.302-(3) Å in {[C₅H₃(SiMe₃)₂]₂Sm(µ-F)}₂ (Xie, Z.; Liu, Z.; Xue, F.; Mak, T. C. W. J. Organomet. Chem. **1997**, 539, 127).
(9) Yang, X.; Stern, C. L.; Marks, T. J. Angew. Chem., Int. Ed. Engl. **1992**, 31, 1375. Yang, X.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. **1994**, 116, 10015

10015

(10) Evans, W. J.; Ulibarri, T. A.; Ziller, J. W. Organometallics 1991, 10, 134.

... (11) Shannon, R. D. Acta Crystallogr., Sect. A **1976**, A32, 751. (12) Evans, W. J.; Bloom, I.; Hunter, W. E.; Atwood, J. L. J. Am. Chem. Soc. 1983, 105, 1401.

(13) Addition of [(C₅Me₅)₂Sm(µ-H)]₂12 (0.050 g, 0.06 mmol) in toluene (5 mL) to a solution of $B(C_6F_5)_3$ (0.061 g, 0.12 mmol) in toluene (5 mL) in an argon-filled glovebox caused an immediate color change from orange to red. Rotary evaporation of the solvent left a red powder (0.110 g, 98%) whose ¹H NMR spectrum (C_6D_6) was identical to that of **1**.

^{113, 7423.}

⁽³⁾ Evans, W. J.; Forrestal, K. J.; Ziller, J. W. Angew. Chem., Int. Ed. Engl. 1997, 36, 774.

⁽⁴⁾ Evans, W. J.; Forrestal, K. J.; Ziller, J. W. J. Am. Chem. Soc. 1995, 117. 12635.

⁽⁵⁾ For example, (C5Me5)2SmMe(THF) reacts with Al2Me6 to form (C5-Me₃)₂Sm[(μ-Me)₂AlMe₂]₂Sm(C₅Me₅)₂.⁶ (6) Evans, W. J.; Chamberlain, L. R.; Ulibarri, T. A.; Ziller, J. W. *J. Am*.

⁽⁷⁾ In an argon-filled glovebox, addition of (C5Me5)3Sm (0.150 g, 0.270 mmol) in toluene (5 mL) to a solution of $B(C_6F_5)_3$ (0.138 g, 0.270 mmol) in mmol) in toluene (5 mL) to a solution of B(Ca^F₅)₃ (0.138 g, 0.270 mmol) in toluene (5 mL) caused an immediate brown to red color change. The solvent and tetramethylfulvalene (identified by ¹H NMR spectroscopy) were removed by rotary evaporation to afford (C₃Me₅)₂Sm[μ -HB(C₆F₅)₃] as a red powder (0.246 g, 98% yield). ¹H NMR (C₆D₆): δ –0.63 (C₅Me₅). ¹³C NMR (C₆D₆): δ 119.7 (C₅Me₅), 21.38 (C₅Me₅). ¹⁹F NMR (C₆D₆): δ –156.9, –162.4. ¹¹B NMR (C₆D₆): δ –7.30 (unresolved multiplet). IR (KBr): 2914 m, 2290 m, 2104 w, 1644 m, 1516 s, 1462 s, 1377 w, 1273 m, 1100 s, 959 s, 802 w, 731 w, 646 w cm⁻¹. Magnetic susceptibility $\chi_{m(298K)} = 1.0 \times 10^{-3}$ cgsu, $\mu_{eff} =$ 1.6 μ_{B} . Anal. Calcd for SmC₃₅H₃₁F₁₅B: Sm 16.12; C 48.90; H, 3.32. Found: Sm 16 20: C 49 04 H 3 47 Sm, 16.20; C, 49.04; H 3.47.

Figure 1. Thermal ellipsoid plot of $[(C_5Me_5)_2Sm][\eta^3-HB(C_6F_5)_3]$, **1**, with ellipsoids drawn at the 50% probability level. Bond distances (Å) and angles (deg) include the following: Sm(1)-H(1), 2.45(5); B(1)-H(1), 1.18(5); Sm(1)-F(1), 2.537(2); Sm(1)-F(6), 2.546(2); Sm-C(C_5Me_5) av, 2.69(3); Cnt(1)-Sm(1)-Cnt(2), 136.4; C(22)-F(1)-Sm(1), 134.0-(2); C(28)-F(6)-Sm(1), 117.1(2).

sphere of samarium and is attached to only aluminum as shown in eq 3 and Figure 2. The structure of 2 is closely related to that

 $2(C_5Me_5)_3Sm + Al_2Me_6--->(C_5Me_5)_2Sm[(\mu-Me)_2Al(C_5Me_5)Me]_2Sm(C_5Me_5)_2 (3)$ 2

of $(C_5Me_5)_2Sm[(\mu-Me)_2AlMe_2]_2Sm(C_5Me_5)_2$, **5**,⁶ except that an η^1 -C₅Me₅ ligand is attached to each Al in place of a methyl group in **5**. Equation 3 parallels the formation of **5** from $(C_5Me_5)_2$ -SmMe(THF) and Al₂Me₆.⁶ Since the C₅Me₅ ligands bound to aluminum in the structure of **2** remain on the same side of the SmCAlCSmCAlC ring, two different η^5 -C₅Me₅ environments are present. This arrangement is preserved in solution to at least -60 °C: two singlets are found for these rings. Another singlet is observed for the C₅Me₅ ring attached to Al which is consistent with earlier observations on the fluxional hapticity of cyclopen-

tadienyl groups bound to aluminum.¹⁷ No evidence was found

(15) In the glovebox, addition of $(C_3Me_5)_3Sm$ (0.100 g, 0.180 mmol) in toluene (5 mL) to a solution of Al₂Me₆ (0.013 g, 0.180 mmol) in toluene (5 mL) caused an immediate brown to orange color change. The solvent was removed by rotary evaporation, and recrystallization from toluene afforded $(C_5Me_5)_2Sm[\mu-Me_2Al(C_5Me_5)(Me)]_2Sm(C_5Me_5)_2$ (0.110 g, 97% yield). ¹H NMR (300 MHz, 25 °C, C_6D_6): δ 0.96 (15H, C_5Me_5), 0.61 (15H, C_5Me_5), -0.30 (15H, C_5Me_5), -1.07 (3H, Me), -13.7 (3H, μ -Me). ¹³C NMR (300 MHz, 25 °C, C_6D_6): δ 10.96 (15H, C_5Me_5), 113.3 (C_5Me_5), 20.44 (C_5Me_5), 20.04 (C_5Me_5), 10.33 (C_5Me_5), IR (KBr): 2909 s, 1443 m, 1382 w, 1178 w, 1022 m, 944 s, 796 m, 649 m cm⁻¹. Magnetic susceptibility $\chi_{m(298K)}$ = 3.88 × 10⁻⁴ cgsu, μ_{eff} = 1.0 μ_{B} . Anal. Calcd for SmC₃₃H₅₄Al: Sm, 23.97; C, 63.12; H, 8.61. Found: Sm, 24.20; C, 62.79; H, 8.47. (16) Compound 2 crystallizes from toluene in space group *Cmca* with *a* =

(16) Compound 2 crystallizes from toluene in space group *Cmca* with a = 24.590(3) Å, b = 15.832(4) Å, c = 32.648 (4) Å, V = 12709(4) Å³, and $D_{calcd} = 1.313$ g/cm³ for Z = 8. The quality of the data were sufficient to establish atomic connectivity but not to report detailed bond distances and angles.

Figure 2. Ball-and-stick plot of $(C_5Me_5)_2Sm[(\mu-Me)_2Al(C_5Me_5)Me]_2-Sm(C_5Me_5)_2$, 2.

for a monomer–dimer equilibrium as was observed for ${\bf 5}$ and related species. 18

The reactions reported here show that the C_5Me_5 ligand is not necessarily inert in the presence of Lewis acids commonly used as activators in olefin polymerization systems. The conversion in eq 1 of $M-C_5Me_5$ to M-H, a potential initiating site for olefin polymerization,¹⁹ and the abstraction of C_5Me_5 in eq 3 to form a bridged complex of the cationic [(C_5Me_5)_2Sm]⁺ moiety both lead to units which can be effective in polymerization.

Although these examples were observed with $(C_5Me_5)_3Sm$, which has previously been shown to have unusual chemistry,⁴ they show that under the proper conditions, the C_5Me_5 ligand can react with Lewis acids. Since the special chemistry of $(C_5-Me_5)_3Sm$ appears to arise from the steric crowding of this ligand set, similar steric crowding (and reactivity) could be available via other ligand sets.

Acknowledgment. We thank the National Science Foundation for support for this research.

Supporting Information Available: Tables of atomic coordinates, atomic displacement parameters, and bond distances and angles (49 pages). See any current masthead page for ordering information and Web access instructions.

JA973058V

⁽¹⁴⁾ Bercaw, J. E.; Marvich, R. H.; Bell, L. G.; Brintzinger, H. H. J. Am. Chem. Soc. **1972**, 94, 1219. Bercaw, J. E. Adv. Chem. Ser. **1978**, No. 167, 136. Watson, P. L. J. Am. Chem. Soc. **1983**, 105, 6491. Bottomley, F.; Egharevba, G. O.; Lin, I. J. B.; White, P. S. Organometallics **1985**, 4, 550. den Haan, K. H.; Teuben, J. H. J. Chem. Soc., Chem. Commun. **1986**, 682.

⁽¹⁷⁾ Fisher, J. D.; Budzelaar, P. H. M.; Shapiro, P. J.; Staples, R. J.; Yap, G. P. A.; Rheingold, A. L. Organometallics 1997, 16, 871. Fisher, J. D.; Wei, M. Y.; Willett, R.; Shapiro, P. J. Organometallics 1994, 13, 3324. Gropen, T.; Haaland, A. J. Organomet. Chem. 1975, 92, 157. Dohmeier, C.; Robl, C.; Tacke, M.; Schnöckel, H. Angew. Chem., Int. Ed. Engl. 1991, 30, 564. Dohmeier, C.; Schnöckel, H.; Robl, C.; Schneider, U.; Ahlrichs, R. Angew. Chem., Int. Ed. Engl. 1993, 32 (2), 1655. Schulz, S.; Roesky, H. W.; Koch, H. J.; Sheldrick, G. M.; Stalke, D.; Kuhn, A. Angew. Chem., Int. Ed. Engl. 1993, 32, (2) 1729.

⁽¹⁸⁾ Busch, M. A.; Harlow, R.; Watson, P. L. Inorg. Chim. Acta 1987, 140, 15. den Haan, K. H.; Wielstra, Y.; Eshuis, J. J. W.; Teuben, J. H. J. Organomet. Chem. 1987, 323, 181.

 ⁽¹⁹⁾ Evans, W. J.; DeCoster, D. M.; Greaves, J. Macromolecules 1995, 28, 7929. Evans, W. J.; DeCoster, D. M.; Greaves, J. Organometallics 1996, 15, 3210.